It will consist of one paper of objective type multiple choice questions and will comprise of 150 marks and you must solve the complete CGPDTM Question Paper in 2 hours.

CGPDTM Syllabus PDF 2023 (Prelims)

CGPD I M Syllabus PDF 2023 (Prelims)		
Subject	Syllabus	
Numerical Ability	Number System, Simplification, Average, Mixture & Alligation, Ratio & Proportion, Percentage, Profit & Loss, SI, CI, Boats & Streams, Pipes & Cisterns, Time & Work, Speed, Distance & Time, Partnerships, Problems on Ages, Mensuration 2D, Mensuration 3D, Data Interpretation, Quadratic Equation, Factorization	
Reasoning Aptitude	Directions, Ranking, Number Series, Letter Series, Alphabets, Counting of Figures, Coding-Decoding, Calendar, Clock, Blood Relations, Inequalities, Seating Arrangement, Puzzle, Dice, Cube, Syllogism, Critical Reasoning, Data Sufficiency, Non-Verbal Reasoning	
English Language	Parts of Speech, Noun, Pronoun, Adjective, Adverb, Verb, Article, Preposition, Conjunction, Vocab, Idioms & Phrases, Antonyms, Synonyms, One Word Substitution, Time & Tense, Clause, Subject Verb Agreement, Direct/Indirect, Active/Passive, Para Jumble, Question Tag, Single Double Fillers, Cloze Test, Reading Comprehension	
General Science	 Physics: - (SI unit, Light and Reflection, Electricity, Wave Optics, Motion, Gravity, Work, Pressure, Units of Measurement, Sound, Heat, Magnetism) Chemistry: - (Properties of Substances, Chemical Reactions, Properties of Gases, Chemistry in everyday life, Definition based questions, Uses, Common Names and Composition of Various Chemicals, Alloys, SI units, Chemical change, and Physical change) 	
	Biology: - (Plant Kingdom, Animal Kingdom, Human Body and Diseases, Prevention and Cure of Illness, Nutrient and Deficiency, Environmental Studies)	
GK, Current Affairs	Current Affairs 2022, Current Affairs 2023, Static GK, Nobel Prize, Sports News, Defence News, Recent Aviation Deals, Recent Defence Deals, Recent Appointments, Important Institutions of India and the World (BRICS, World Bank, IMF, RBI, etc.	
IP legislation in India, WIPO and related treaties	Introduction to Intellectual Property Rights, Trade Marks, Trade Secrets, Geographical Indication of Goods, Copyrights, Patents, Industrial Designs, IP Rights, WIPO and Related Treaties	

CGPDTM mains examination will be conducted in offline mode only and will consist of a written examination, which will consist of 2 papers i.e., Paper –I (OMR Based) and Paper –II (Descriptive answer). Paper I will be of 100 marks and Paper –II will be of 300 marks.

CGPDTM Syllabus PDF 2023 (Mains- Paper-I)

Subject	Syllabus
Elementary Mathematics	Information of Numbers, Divisibility Rule, Remainder Theorem, Concept of Bar, Concept of Unit Digit, Factors, LCM, HCF, Decimals & Fractions, Mean, Mode, Median, Permutation & Combination, Probability, Surds & Indices
General Aptitude	Quantitative Aptitude + Reasoning Aptitude (Analytical, Spatial)
English Language	Parts of Speech, Noun, Pronoun, Adjective, Adverb, Verb, Article, Preposition, Conjunction, Vocab, Idioms & Phrases, Antonyms, Synonyms, One Word Substitution, Time & Tense, Clause, Subject Verb Agreement, Direct/Indirect, Active/Passive, Para Jumble, Question Tag, Single Double Fillers, Cloze Test, Reading Comprehension
General Knowledge & Current Affairs	Current Affairs 2022, Current Affairs 2023, Static GK, Nobel Prize, Sports News, Defence News, Recent Aviation Deals, Recent Defence Deals, Recent Appointments, Important Institutions of India and the World (BRICS, World Bank, IMF, RBI, etc.
Intellectual Property	Introduction to Intellectual Property Rights, Trade Marks, Trade Secrets, Geographical Indication of Goods, Copyrights, Patents, Industrial Designs, IP Rights, WIPO and Related Treaties
Subjective Paper (Subject Paper)	Detailed Syllabus Given Below

CGPDTM Syllabus PDF 2023 (Mains- Paper-II- Subject Related)

ANNEXURE

SYLLABUS

The syllabus for Paper-II of the mains examination in respect of different disciplines will be as follows:

1. BT Bio Technology

Microbiology: Prokaryotic and eukaryotic cell structure; Microbial nutrition, growth and control; Microbial metabolism (aerobic and anaerobic respiration, photosynthesis); Nitrogen fixation; Chemical basis of mutations and mutagens; Microbial genetics (plasmids, transformation, transduction, conjugation); Microbial diversity and characteristic features; Viruses.

Biochemistry: Biomolecules and their conformation; Weak inter-molecular interactions in biomacromolecules; Chemical and functional nature of enzymes; Kinetics of single substrate and bi-substrate enzyme catalyzed reactions; Bioenergetics; Metabolism (Glycolysis, TCA and Oxidative phosphorylation); Membrane transport and pumps; Cell cycle and cell growth control; Cell signaling and signal transduction.

Molecular Biology and Genetics: Molecular structure of genes and chromosomes; DNA replication and control; Transcription and its control; Translational processes; Regulatory controls in prokaryotes and eukaryotes; Mendelian inheritance; Gene interaction; Complementation; Linkage, recombination and chromosome mapping; Extrachromosomal inheritance; Chromosomal variation; Population genetics; Transposable elements, Molecular basis of genetic diseases and applications.

Process Biotechnology: Bioprocess technology for the production of cell biomass and primary/secondary metabolites, such as baker's yeast, ethanol, citric acid, amino acids, exo-polysacharides, antibiotics and pigments etc.; Microbial production, purification and bioprocess application(s) of industrial enzymes; Production and purification of recombinant proteins on a large scale; Chromatographic and membrane based bioseparation methods; Immobilization of enzymes and cells and their application for bioconversion processes. Aerobic and anaerobic biological processes for stabilization of solid / liquid wastes; Bioremediation.

Bioprocess Engineering: Kinetics of microbial growth, substrate utilization and product formation; Simple structured models; Sterilization of air and media; Batch, fed-batch and continuous processes; Aeration and agitation; Mass transfer in bioreactors; Rheology of fermentation fluids; Scale-up concepts; Design of fermentation media; Various types of microbial and enzyme reactors; Instrumentation in bioreactors.

Plant and Animal Biotechnology: Special features and organization of plant cells; Totipotency; Regeneration of plants; Plant products of industrial importance; Biochemistry of major metabolic pathways and products; Autotrophic and heterotrophic growth; Plant growth regulators and elicitors; Cell suspension culture development: methodology, kinetics of growth and production formation, nutrient optimization; Production of secondary metabolites by plant suspension cultures; Hairy root cultures and their cultivation. Techniques in raising transgencies.

Characteristics of animal cells: Metabolism, regulation and nutritional requirements for mass cultivation of animal cell cultures; Kinetics of cell growth and product formation and effect of shear force; Product and substrate transport; Micro & macro-carrier culture; Hybridoma technology; Live stock improvement;

Cloning in animals; Genetic engineering in animal cell culture; Animal cell preservation.

Immunology: The origin of immunology; Inherent immunity; Humoral and cell mediated immunity; Primary and secondary lymphoid organ; Antigen; B and T cells and Macrophages; Major histocompatibility complex (MHC); Antigen processing and presentation; Synthesis of antibody and secretion; Molecular basis of antibody diversity; Polyclonal and monoclonal antibody; Complement; Antigenantibody reaction; Regulation of immune response; Immune tolerance; Hyper sensitivity; Autoimmunity; Graft versus host reaction.

Recombinant DNA Technology: Restriction and modification enzymes; Vectors: plasmid, bacteriophage and other viral vectors, cosmids, Ti plasmid, yeast artificial chromosome; cDNA and genomic DNA library; Gene isolation; Gene cloning; Expression of cloned gene; Transposons and gene targeting; DNA labeling; DNA sequencing; Polymerase chain reactions; DNA fingerprinting; Southern and northern blotting; In-situ hybridization; RAPD; RFLP; Site-directed mutagenesis; Gene transfer technologies; Gene therapy.

Bioinformatics: Major bioinformatics resources (NCBI, EBI, ExPASy); Sequence and structure databases; Sequence analysis (biomolecular sequence file formats, scoring matrices, sequence alignment, phylogeny); Genomics and Proteomics (Large scale genome sequencing strategies; Comparative genomics; Understanding DNA microarrays and protein arrays); Molecular modeling and simulations (basic concepts including concept of force fields).

2. BC Bio-Chemistry

Organization of life. Importance of water. Cell structure and organelles. Structure and function of biomolecules: Amino acids, Carbohydrates, Lipids, Proteins and Nucleic acids. Biochemical separation techniques and characterization: ion

exchange, size exclusion and affinity chromatography, electrophoresis, UV-visible, fluorescence and Mass spectrometry. Protein structure, folding and function: Myoglobin, Hemoglobin, Lysozyme, Ribonuclease A, Carboxypeptidase and Chymotrypsin. Enzyme kinetics including its regulation and inhibition, Vitamins and Coenzymes.

Metabolism and bioenergetics. Generation and utilization of ATP. Metabolic pathways and their regulation: glycolysis, TCA cycle, pentose phosphate pathway, oxidative phosphorylation, gluconeogenesis, glycogen and fatty acid metabolism. Metabolism of Nitrogen containing compounds: nitrogen fixation, amino acids and nucleotides. Photosynthesis: the Calvin cycle.

Biological membranes. Transport across membranes. Signal transduction; hormones and Neurotransmitters. DNA replication, transcription and translation. Biochemical regulation of gene expression. Recombinant DNA technology and applications: PCR, site directed mutagenesis and DNA microarray.

Immune system. Active and passive immunity. Complement system. Antibody structure, function and diversity. Cells of the immune system: T, B and macrophages. T and B cell activation. Major histocompatibilty complex. T cell receptor. Immunological techniques: Immunodiffusion, immune electrophoresis, RIA and ELISA.

3. FT Food Technology

Food Chemistry and Nutrition: Carbohydrates: Structure and functional properties of monooligo- polysaccharides including starch, cellulose, pectic substances and dietary fibre; Proteins: Classification and structure of proteins in food; Lipids: Classification and structure of lipids, Rancidity of fats, Polymerization and polymorphism; Pigments: Carotenoids, chlorophylls, anthocyanins, tannins and myoglobin; Food flavours: Terpenes, esters, ketones and

quinones; Enzymes: Specificity, Kinetics and inhibition, Coenzymes, Enzymatic and non-enzymatic browning; Nutrition: Balanced diet, Essential amino acids and fatty acids, PER, Water soluble and fat soluble vitamins, Role of minerals in nutrition, Antinutrients, Nutrition deficiency diseases.

Food Microbiology: Characteristics of microorganisms: Morphology, structure and detection of bacteria, yeast and mold in food, Spores and vegetative cells; Microbial growth in food: Intrinsic and extrinsic factors, Growth and death kinetics, serial dilution method for quantification; Food spoilage: Contributing factors, Spoilage bacteria, Microbial spoilage of milk and milk products, meat and meat products; Foodborne disease: Toxins produced by Staphylococcus, Clostridium and Aspergillus; Bacterial pathogens: Salmonella, Bacillus, Listeria, Escherichia coli, Shigella, Campylobacter; Fermented food: Buttermilk, yoghurt, cheese, sausage, alcoholic beverage, vinegar, sauerkraut and soya sauce.

Food Products Technology: Processing principles: Canning, chilling, freezing, dehydration, control of water activity, CA and MA storage, fermentation, hurdle technology, addition of preservatives and food additives, Food packaging, cleaning in place and food laws.; Grain products processing: Milling of rice, wheat, and maize, parboiling of paddy, production of bread, biscuits, extruded products and breakfast cereals, Solvent extraction, refining and hydrogenation of oil; Fruits, vegetables and plantation products processing: Extraction, clarification concentration and packaging of fruit juice, Production of jam, jelly, marmalade, squash, candies, and pickles, pectin from fruit waste, tea, coffee, chocolate and essential oils from spices; Milk and milk products processing: Pasteurized and sterilized milk, cream, butter, ghee, ice-cream, cheese and milk powder; Animal products processing: Drying and canning of fish, post mortem changes, tenderization and freezing of meat, egg powder.

Food Engineering: Mass and energy balance; Momentum transfer: Flow rate and pressure drop relationships for Newtonian fluids flowing through pipe, Characteristics of non- Newtonian fluids – generalized viscosity coefficient and Reynolds number, Flow of compressible fluid, Flow measurement, Pumps and compressors; Heat transfer: Heat transfer by conduction, convection, radiation, boiling and condensation, Unsteady state heat transfer in simple geometry, NTUeffectiveness relationship of co-current and counter current double pipe heat exchanger; Mass transfer: Molecular diffusion and Fick's Law, Steady state mass transfer, Convective mass transfer, Permeability of films and laminates; Mechanical operations: Energy requirement and rate of operations involved in size reduction of solids, high pressure homogenization, filtration, centrifugation, settling, sieving, flow through porous bed, agitation of liquid, solid-solid mixing, and single screw extrusion; Thermal operations: Energy requirement and rate of operations involved in process time evaluation in batch and continuous sterilization, evaporation of liquid foods, hot air drying of solids, spray and freezedrying, freezing and crystallization; Mass transfer operations: Properties of airwater vapor mixture; Humidification and dehumidification operations.

4. CY	Chemistry
-------	-----------

Inorganic Chemistry

- 1. Chemical periodicity
- 2. Structure and bonding in homo- and heteronuclear molecules, including shapes of molecules (VSEPR Theory).
- 3. Concepts of acids and bases, Hard-Soft acid base concept, Non-aqueous solvents.
- 4. Main group elements and their compounds: Allotropy, synthesis, structure and bonding, industrial importance of the compounds.

- 5. Transition elements and coordination compounds: structure, bonding theories, spectral and magnetic properties, reaction mechanisms.
- 6. Inner transition elements: spectral and magnetic properties, redox chemistry, analytical applications.
- 7. Organometallic compounds: synthesis, bonding and structure, and reactivity.
 Organometallics in homogeneous catalysis.
- 8. Cages and metal clusters.
- 9. Analytical chemistry- separation, spectroscopic, electro- and thermoanalytical methods.
- 10.Bioinorganic chemistry: photosystems, porphyrins, metalloenzymes, oxygen transport, electron- transfer reactions; nitrogen fixation, metal complexes in medicine.
- 11. Characterisation of inorganic compounds by IR, Raman, NMR, EPR, Mössbauer, UV- vis, NQR, MS, electron spectroscopy and microscopic techniques.
- 12. Nuclear chemistry: nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis.

Physical Chemistry

- 1. Basic principles of quantum mechanics: Postulates; operator algebra; exactly-solvable systems: particle-in-a-box, harmonic oscillator and the hydrogen atom, including shapes of atomic orbitals; orbital and spin angular momenta; tunneling.
- 2. Approximate methods of quantum mechanics: Variational principle; perturbation theory up to second order in energy; applications.
- 3. Atomic structure and spectroscopy; term symbols; many-electron systems and antisymmetry principle.
- 4. Chemical bonding in diatomics; elementary concepts of MO and VB theories; Huckel theory for conjugated π -electron systems.

- 5. Chemical applications of group theory; symmetry elements; point groups; character tables; selection rules.
- 6. Molecular spectroscopy: Rotational and vibrational spectra of diatomic molecules; electronic spectra; IR and Raman activities selection rules; basic principles of magnetic resonance.
- 7. Chemical thermodynamics: Laws, state and path functions and their applications; thermodynamic description of various types of processes; Maxwell's relations; spontaneity and equilibria; temperature and pressure dependence of thermodynamic quantities; Le Chatelier principle; elementary description of phase transitions; phase equilibria and phase rule; thermodynamics of ideal and non-ideal gases, and solutions.
- 8. Statistical thermodynamics: Boltzmann distribution; kinetic theory of gases; partition functions and their relation to thermodynamic quantities calculations for model systems.
- 9. Electrochemistry: Nernst equation, redox systems, electrochemical cells; Debye-Huckel theory; electrolytic conductance Kohlrausch's law and its applications; ionic equilibria; conductometric and potentiometric titrations.
- 10. Chemical kinetics: Empirical rate laws and temperature dependence; complex reactions; steady state approximation; determination of reaction mechanisms; collision and transition state theories of rate constants; unimolecular reactions; enzyme kinetics; salt effects; homogeneous catalysis; photochemical reactions.
- 11. Colloids and surfaces: Stability and properties of colloids; isotherms and surface area; heterogeneous catalysis.
- 12. Solid state: Crystal structures; Bragg's law and applications; band structure of solids.
- 13. Polymer chemistry: Molar masses; kinetics of polymerization.
- 14. Data analysis: Mean and standard deviation; absolute and relative errors; linear regression; covariance and correlation coefficient.

Organic Chemistry

- 1. IUPAC nomenclature of organic molecules including regio- and stereoisomers.
- 2. Principles of stereochemistry: Configurational and conformational isomerism in acyclic and cyclic compounds; stereogenicity, stereoselectivity, enantioselectivity, diastereoselectivity and asymmetric induction.
- 3. Aromaticity: Benzenoid and non-benzenoid compounds generation and reactions.
- 4. Organic reactive intermediates: Generation, stability and reactivity of carbocations, carbanions, free radicals, carbenes, benzynes and nitrenes.
- 5. Organic reaction mechanisms involving addition, elimination and substitution reactions with electrophilic, nucleophilic or radical species. Determination of reaction pathways.
- 6. Common named reactions and rearrangements applications in organic synthesis.
- 7. Organic transformations and reagents: Functional group interconversion including oxidations and reductions; common catalysts and reagents (organic, inorganic, organometallic and enzymatic). Chemo, regio and stereoselective transformations.
- 8. Concepts in organic synthesis: Retrosynthesis, disconnection, synthons, linear and convergent synthesis, umpolung of reactivity and protecting groups.
- 9. Asymmetric synthesis: Chiral auxiliaries, methods of asymmetric induction substrate, reagent and catalyst controlled reactions; determination of enantiomeric and diastereomeric excess; enantio-discrimination. Resolution optical and kinetic.
- 10.Pericyclic reactions electrocyclisation, cycloaddition, sigmatropic rearrangements and other related concerted reactions. Principles and applications of photochemical reactions in organic chemistry.
- 11. Synthesis and reactivity of common heterocyclic compounds containing one or

two heteroatoms (O, N, S).

- 12. Chemistry of natural products: Carbohydrates, proteins and peptides, fatty acids, nucleic acids, terpenes, steroids and alkaloids. Biogenesis of terpenoids and alkaloids.
- 13. Structure determination of organic compounds by IR, UV-Vis, 1H & 13C NMR and Mass spectroscopic techniques.

Interdisciplinary topics

- 1. Chemistry in nanoscience and technology
- 2. Catalysis and green chemistry
- 3. Medicinal chemistry
- 4. Supramolecular chemistry
- 5. Environmental chemistry

5. PS Polymer Science & Technology

Chemistry of high polymers: Monomers, functionality, degree of polymerizations, classification of polymers, glass ransition, melting transition, criteria for rubberiness, polymerization methods: addition and condensation; their kinetics, metallocene polymers and other newer techniques of polymerization, copolymerization, monomer reactivity ratios and its significance, kinetics, different copolymers, random, alternating, azeotropic copolymerization, block and graft copolymers, techniques for copolymerization-bulk, solution, suspension, emulsion.

Polymer Characterization: Solubility and swelling, concept of average molecular weight, determination of number average, weight average, viscosity average and Z-average molecular weights, polymer crystallinity, analysis of polymers using IR, XRD, thermal (DSC, DMTA, TGA), microscopic (optical and electronic) techniques.

Synthesis and properties: Commodity and general purpose thermoplastics: PE,

PP, PS, PVC, Polyesters, Acrylic, PU polymers. Engineering Plastics: Nylon, PC, PBT, PSU, PPO, ABS, Fluoropolymers Thermosetting polymers: PF, MF, UF, Epoxy, Unsaturated polyester, Alkyds. Natural and synthetic rubbers: Recovery of NR hydrocarbon from latex, SBR, Nitrile, CR, CSM, EPDM, IIR, BR, Silicone, TPE.

Polymer blends and composites: Difference between blends and composites, their significance, choice of polymers for blending, blend miscibility-miscible and immiscible blends, thermodynamics, phase morphology, polymer alloys, polymer eutectics, plastic-plastic, rubberplastic and rubber-rubber blends, FRP, particulate, long and short fibre reinforced composites.

Polymer Technology: Polymer compounding-need and significance, different compounding ingredients for rubber and plastics, crosslinking and vulcanization, vulcanization kinetics.

Polymer rheology: Flow of Newtonian and non-Newtonian fluids, different flow equations, dependence of shear modulus on temperature, molecular/segmental deformations at different zones and transitions. Measurements of rheological parameters by capillary rotating, parallel plate, cone-plate rheometer. viscoelasticity-creep and stress relaxations, mechanical models, control of rheological characteristics through compounding, rubber curing in parallel plate viscometer, ODR and MDR.

Polymer processing: Compression molding, transfer molding, injection molding, blow molding, reaction injection molding, extrusion, pultrusion, calendaring, rotational molding, thermoforming, rubber processing in two-roll mill, internal mixer.

Polymer testing: Mechanical-static and dynamic tensile, flexural, compressive, abrasion, endurance, fatigue, hardness, tear, resilience, impact, toughness.

Conductivity-thermal and electrical, dielectric constant, dissipation factor, power factor, electric resistance, surface resistivity, volume resistivity, swelling, ageing resistance, environmental stress cracking resistance.

6. BM

Bio Medical Engineering

Biomedical Engineering is a interdisciplinary field that develops and perfects tools and techniques that extend and enhance the capability of a clinician in medical procedures, and helps in the monitoring and control of the physiological parameters of patients. Biomedical engineering graduates should have background knowledge of Electrical, Electronics, Mechanics, material Science Communication and Instrumentation Engineering besides the exposure to anatomy and physiology including clinical monitoring with safety analysis.

Students must have sufficient knowledge in the theory and practice of Biomedical Instrumentation. Biosignal Processing, Medical Image Processing, Rehabilitation Engineering, Biomaterials, Medical devices and Biosensors.

Instrumentation: Biomedical "Introduction Biomedical medical to instrumentation, Recording Systems, Blood pressure measurement, Electrocardiograph, ECG leads, artifacts, vector cardiograph, Phonocardiograph, defibrillators, pacemakers, fixed, demand, machine, heartlung Electroencephalograph, Block diagram, 10-20 electrode placement, recording of evoked potential, sensory and motor, EEG telemetry, Electromyography, Block diagram. recording system, Hemodyalisis Machine, electrical Hazards and Safety.

Anatomy and Physiology: Skeletal system, Nervous system and special senses, Cardiovascular system, Respiratory system, Digestive System.

Medical Physics and Biochemistry: Introduction to Biochemistry, Carbohydrate Metabolism, Protein Metabolism, Lipid Metabolism, Nucleic and Metabolism,

Vitamins- water soluble and fat soluble, Minerals - Sodium, Potasim, Calcium, Magnesium and phosphate.

Biomedical Signal Processing: Discrete and continuous Random variables, Probability distribution and density functions. Gaussian and Rayleigh density functions, Correlation between random variables. Stationary random process, Ergodicity, Power special density and autocorrelation function of random processes. Noise power spectral density analysis, Noise bandwidth, noise figure of systems, Data Compression Techniques, Cardio logical, Signal Processing, Adaptive Noise Canceling, neurological Signal Processing.

Medical Image Processing: Digital Image representation, steps in image processing, Elements of Digital Image processing systems. Fundamentals: Elements of visual perception, sampling and quantization, basic relationship between pixels. Imaging Geometry — some basic transforms, perspective transforms, Image Transform — Fourier transform, Discrete Fourier transform, Fast Fourier transform, properties of 2 - D Fourier transform, Image Enhancement - Spatial domain methods, Frequency domain methods, Enhancement by point processing, spatial filtering, Enhancement in the Frequency domain, Image Restoration - Degradation model, Algebraic approach to restoration, Inverse Filtering, Wiener Filter constraint least square1; restoration, Restoration in the spatial domain, Image Compression- Redundancy, Compression models, Lossy, compression, Image compression standards, Image Segmentation - Detection of Detection of Discontinuity — Edge linking and boundary detection, Thresholding Region oriented segmentation Image representation - Represent- ion schemes. Boundary descriptors, Regional descriptors, Recognition and interpretation -Elements of Image analysis patterns and pattern classes, Decision and theoretic methods, structural methods, Interpretation.

Microprocessor-based Medical Instrumentation: 8086 Processor-Introduction, 8086 Architecture, Pin configuration, 8086 in min/max node, Addressing modes, Instruction set of 8086, Assembler directive, Assembly language programming, Peripherals & interfacing With 8086-Serial & parallel I/O (8251A and 8255), Programmable interval timer 8253, Programmable DMA controller 8257, programmable interrupt controller 8259A, Keyboard and display controller 8279, ADC / DAC interfacing, 80286 Processor-Features of 80286, internal architecture of 80286, real addressing mode virtual addressing mode, privilege, protection, basic bus operation of 80286, fetch cycles of 80286, Advance In Microprocessors-Features of Pentium processor, Pentium - I, Pentium - II, Pentium - III, Pentium - IV, Introduction to microcontroller 8051, architecture of 8051, Register set of 8051.

Biomaterials: Properties of Materials. Classes of materials used in medicine. Metals, Polymers, Hydrogels Bioresorbable and Biodegradable Materials, Ceramics, Natural materials composites thin films, grafts, Coatings medical fibers and Biological functional materials, Smart materials, Pyrolytic Carbon for longterm medical implants textured and Porous materials non-fouling surfaces, Host reactions to: inflammation, Wound healing and the Foreign body response. Systemic toxicity and Hypersensitivity. Blood coagulation and Blood-material Interactions. Tumorigenesis, Testing biomaterials Applications of materials in medicine, Dentistry and Biology Cardiovascular medical devices Nonthrombogenic treatments and Strategies. Orthopedic biomaterials, Performance of drug delivery systems, Sutures. Burn dressings and Skin substitutes Sterilization of implants and Devices implants and Device failure. Surface properties with Biological responses. Implant retrieval and Evaluation. Standards development and regulation of medical products using biomaterials. Nano bio materials.

Biomechanics: Introduction to Fluid Mechanism, Basic laws governing conservation of mass, momentum and energy, laminar flow, Coquette flow and Hager - poise Ville equation, turbulent flow, Flow Dynamical Study of Circulating System, Heart and blood vessels, Ventricular pressure, volume, ECG time Based cyclic, variation. Determination of ventricular wall diastolic, systolic modules vs. stress properties and their physiological connotation, Intra- ventricular blood, Flow analysis of velocity and pressure gradient, Arterial impedance relating pulse pressure and flow rate, microcirculatory, flow, transcapillary fluid movements in systemic circulation, physiological factors controlling blood pressure, heart valves, Biomechanical stress strain model Muscle in terms of its elastic and contractile elements parameters, Lung Mechanics Lung structure and function, methods of determining ling pressure and volume, airway resistance and conductance.

Materials and Components

Structure and properties of Electrical Engineering materials; Conductors, Semiconductors and Insulators, magnetic, Ferroelectric, Piezoelectric, Ceramic, Optical and Super- conducting materials. Passive components and characteristics Resistors, Capacitors and Inductors; Ferrities, Quartz crystal Ceramic resonators, Electromagnetic an Electromechanical components.

Physical Electronics, Electron Devices and ICs

Electrons and holes in semiconductors, Carrier Statistics, Mechanism of current flow in a semiconductor, Hall effect; Junction theory; Different types of diodes and their characteristics; Bipolar Junction transistor; Field effect transistors; Power switching devices like SCRs, CTOs, power MOSFETs; Basics of ICs - bipolar, MOS and CMOS types; basic of Opto Electronics.

Signals and Systems

Classification of signals and systems: System modelling in terms of differential and difference equations; State variable representation; Fourier series; Fourier representation; Fourier series; Fourier transforms and their application to system analysis; Laplace transforms and their application to system analysis; Convolution and superposition integrals and their applications; Z-transforms and their applications to the analysis and characterisation of discrete time systems; Random signals and probability, Correlation functions; Spectral density; Response of linear system to random inputs.

Network theory

Network analysis techniques; Network theorems, transient response, steady state sinusoidal response; Network graphs and their applications in network analysis; Tellegen's theorem. Two port networks; Z, Y, h and transmission parameters. Combination of two ports, analysis of common two ports. Network functions: parts of network functions, obtaining a network function from a given part. Transmission criteria: delay and rise time, Elmore's and other definitions effect of cascading. Elements of network synthesis.

Electromagnetic Theory

Analysis of electrostatic and magnetostatic fields; Laplace's and Piossons's equations; Boundary value problems and their solutions; Maxwell's equations; application to wave propagation in bounded and unbounded media; Transmission lines: basic theory, standing waves, matching applications, misconstrue lines; Basics of wave guides and resonators; Elements of antenna theory.

Electronic Measurements and instrumentation

Basic concepts, standards and error analysis; Measurements of basic electrical quantities and parameters; Electronic measuring instruments and their principles of working: analog and digital, comparison, characteristics, application. Transducers;

Electronic measurements of non electrical quantities like temperature, pressure, humidity etc; basics of telemetry for industrial use.

Analog Electronic Circuits

Transistor biasing and stabilization. Small signal analysis. Power amplifiers. Frequency response. Wide banding techniques. Feedback amplifiers. Tuned amplifiers. Oscillators. Rectifiers and power supplies. Op Amp PLL, other linear integrated circuits and applications. Pulse shaping circuits and waveform generators.

Digital Electronic Circuits

Transistor as a switching element; Boolean algebra, simplification of Boolean functions, Karnaguh map and applications; IC Logic gates and their characteristics; IC logic families: DTL, TTL, ECL, NMOS, PMOS and CMOS gates and their comparison; Combinational logic Circuits; Half adder, Full adder; Digital comparator; Multiplexer Demultiplexer; ROM and their applications. Flip flops. R-S, J.K, D and T flip-flops; Different types of counters and registers Waveform generators. A/D and D/A converters. Semiconductor memories.

Control Systems

Transient and steady state response of control systems; Effect of feedback on stability and sensitivity; Root locus techniques; Frequency response analysis. Concepts of gain and phase margins: Constant-M and Constant-N Nichol's Chart; Approximation of transient response from Constant-N Nichol's Chart; Approximation of transient response from closed loop frequency response; Design of Control Systems, Compensators; Industrial controllers.

Communication Systems

Basic information theory; Modulation and detection in analogue and digital systems; Sampling and data reconstructions; Quantization & coding; Time division and frequency division multiplexing; Equalization; Optical Communication: in

free space & fiber optic; Propagation of signals oat HF, VHF, UHF and microwave frequency; Satellite Communication.

Microwave Engineering

Microwave Tubes and solid state devices, Microwave generation and amplifiers, Waveguides and other Microwave Components and Circuits, Misconstrue circuits, Microwave Antennas, Microwave Measurements, Masers, lasers; Microwave propagation. Microwave Communication Systems terrestrial and Satellite based.

Computer Engineering

Number Systems. Data representation; Programming; Elements of a high level programming language PASCAL/C; Use of basic data structures; Fundamentals of computer architecture; Processor design; Control unit design; Memory organisation, I/o System Organisation. Microprocessors: Architecture and instruction set of Microprocessors 8085 and 8086, Assembly language Programming. Microprocessor Based system design typical examples. Personal computers and their typical uses.

8. EE Electrical Engineering

Circuit Theory: Circuit components; network graphs; KCL, KVL; circuit analysis methods: nodal analysis, mesh analysis; basic network theorems and applications; transient analysis: RL, RC and RLC circuits; sinusoidal steady state analysis; resonant circuits; coupled circuits; balanced 3-phase circuits; Two-port networks.

Signals & Systems: Representation of continuous—time and discrete-time signals & systems; LTI systems; convolution; impulse response; time-domain analysis of LTI systems based on convolution and differential/difference equations. Fourier transform, Laplace transform, Z-transform, Transfer function. Sampling and recovery of signals DFT, FFT Processing of analog signals through discrete-time systems.

E.M. Theory: Maxwell's equations, wave propagation in bounded media. Boundary conditions, reflection and refraction of plane waves. Transmission line: travelling and standing waves, impedance matching, Smith chart.

Analog Electronics: Characteristics and equivalent circuits (large and small-signal) of Diode, BJT, JFET and MOSFET. Diode circuits: clipping, clamping, rectifier. Biasing and bias stability. FET amplifiers. Current mirror; Amplifiers: single and multi-stage, differential, operational, feedback and power. Analysis of amplifiers; frequency response of amplifiers. OPAMP circuits. Filters; sinusoidal oscillators: criterion for oscillation; single- transistor and OPAMP configurations. Function generators and wave-shaping circuits. Linear and switching power supplies.

Digital Electronics: Boolean algebra; minimization of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinational circuits: arithmetic circuits, code converters, multiplexers and decoders. Sequential circuits: latches and flip- flops, counters and shift-registers. Comparators, timers, multivibrators. Sample and hold circuits, ADCs and DACs. Semiconductor memories. Logic implementation using programmable devices (ROM, PLA, FPGA).

Energy Conversion: Principles of electromechanical energy conversion: Torque and emf in rotating machines. DC machines: characteristics and performance analysis; starting and speed control of motors; Transformers: principles of operation and analysis; regulation, efficiency; 3-phase transformers. 3-phase induction machines and synchronous machines: characteristics and preformance analysis; speed control.

Power Electronics and Electric Drives: Semiconductor power devices: diode, transistor, thyristor, triac, GTO and MOSFET-static characteristics and principles

of operation; triggering circuits; hase control rectifiers; bridge converters: fully-controlled and half- controlled; principles of thyristor choppers and inverters; DC-DC converters; Switch mode inverter; basic concepts of speed control of DC and AC Motor drives applications of variable-speed drives.

Analog Communication: Random variables: continuous, discrete; probability, probability functions. Statistical averages; probability models; Random signals and noise: white noise, noise equivalent bandwidth; signal transmission with noise; signal to noise ratio. Linear CW modulation: Amplitude modulation: DSB, DSB-SC and SSB. Modulators and Demodulators; Phase and Frequency modulation: PM & FM signals; narrowband FM; generation & detection of FM and PM, Deemphasis, Preemphasis. CW modulation system: Superhetrodyne receivers, AM receivers, communication receivers, FM receivers, phase locked loop, SSB receiver Signal to noise ratio calculation for AM and FM receivers.

Control Systems: Elements of control systems; blockdiagram representation; open-loop & closed-loop systems; principles and applications of feed-back. Control system components.

LTI systems: time- domain and transform-domain analysis. Stability: Routh Hurwitz criterion, root-loci, Bodeplots and polar plots, Nyquist's criterion; Design of lead-lad compensators. Proportional, PI, PID controllers. Statevariable representation and analysis of control systems.

Microprocessors and Microcomputers: PC organisation; CPU, instruction set, register set, timing diagram, programming, interrupts, memory interfacing, I/O interfacing, programmable peripheral devices.

Measurement and Instrumentation: Error analysis; measurement of current, voltage, power, energy, power-factor, resistance, inductance, capacitance and frequency; bridge measurement. Signal conditioning circuit; Electronic measuring

instruments: multimeter, CRO, digital voltmeter, frequency counter, Q-meter, spectrum-analyzer, distortion-meter. Transducers: thermocouple, thermistor, LVDT, strain-gauge, piezo-electric crystal.

Power Systems: Analysis and Control: Steady-state performance of overhead transmission lines and cables; principles of active and reactive power transfer and distribution; per-unit quantities; bus admittance and impedance matrices; load flow; voltage control and power factor correction; economic operation; symmetrical components, analysis of symmetrical and unsymmetrical faults. Concept of system stability: swing curves and equal area criterion. Static VAR system. Basic concepts of HVDC transmission.

Power System Protection: Principles of overcurrent, differential and distance protection. Concept of solid state relays. Circuit breakers. Computer aided protection: Introduction; line bus, generator, transformer protection; numeric relays and application of DSP to protection.

Digital Communication: Pulse code modulation (PCM), differential pulse code modulation (DPCM), delta modulation (DM), Digital modulation and demodulation schemes: amplitude, phase and frequency keying schemes (ASK, PSK, FSK). Error control coding: error detection and correction, linear block codes, convolution codes. Information measure and source coding. Data networks, 7-layer architecture.

9. CS Computer Science and Information Technology

Digital Logic: Logic functions, Minimization, Design and synthesis of combinational and sequential circuits; Number representation and computer arithmetic (fixed and floating point).

Computer Organization and Architecture: Machine instructions and addressing modes, ALU and data-path, CPU control design, Memory interface, I/O interface

(Interrupt and DMA mode), Instruction pipelining, Cache and main memory, Secondary storage.

Programming and Data Structures: Programming in C; Functions, Recursion, Parameter passing, Scope, Binding; Abstract data types, Arrays, Stacks, Queues, Linked Lists, Trees, Binary search trees, Binary heaps.

Algorithms: Analysis, Asymptotic notation, Notions of space and time complexity, Worst and average case analysis; Design: Greedy approach, Dynamic programming, Divide-and- conquer; Tree and graph traversals, Connected components, Spanning trees, Shortest paths; Hashing, Sorting, Searching. Asymptotic analysis (best, worst, average cases) of time and space, upper and lower bounds, Basic concepts of complexity classes – P, NP, NP-hard, NP- complete.

Theory of Computation: Regular languages and finite automata, Context free languages and Push-down automata, Recursively enumerable sets and Turing machines, Undecidability.

Compiler Design: Lexical analysis, Parsing, Syntax directed translation, Runtime environments, Intermediate and target code generation, Basics of code optimization.

Operating System: Processes, Threads, Inter-process communication, Concurrency, Synchronization, Deadlock, CPU scheduling, Memory management and virtual memory, File systems, I/O systems, Protection and security.

Databases: ER-model, Relational model (relational algebra, tuple calculus), Database design (integrity constraints, normal forms), Query languages (SQL), File structures (sequential files, indexing, B and B+ trees), Transactions and concurrency control.

Information Systems and Software Engineering: information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project, design, coding, testing, implementation, maintenance.

Computer Networks: ISO/OSI stack, LAN technologies (Ethernet, Token ring), Flow and error control techniques, Routing algorithms, Congestion control, TCP/UDP and sockets, IP(v4), Application layer protocols (icmp, dns, smtp, pop, ftp, http); Basic concepts of hubs, switches, gateways, and routers. Network security – basic concepts of public key and private key cryptography, digital signature, firewalls.

Web technologies: HTML, XML, basic concepts of client-server computing.

10.PH	Physics
-------	---------

Mathematical Methods of Physics

Dimensional analysis. Vector algebra and vector calculus. Linear algebra, matrices, Cayley- Hamilton Theorem. Eigenvalues and eigenvectors. Linear ordinary differential equations of first & second order, Special functions (Hermite, Bessel, Laguerre and Legendre functions). Fourier series, Fourier and Laplace transforms. Elements of complex analysis, analytic functions; Taylor & Laurent series; poles, residues and evaluation of integrals. Elementary probability theory, random variables, binomial, Poisson and normal distributions. Central limit theorem.

Classical Mechanics

Newton's laws. Dynamical systems, Phase space dynamics, stability analysis. Central force motions. Two body Collisions - scattering in laboratory and Centre of mass frames. Rigid body dynamics- moment of inertia tensor. Non-inertial frames and pseudoforces. Variational principle. Generalized coordinates. Lagrangian and Hamiltonian formalism and equations of motion. Conservation laws and cyclic coordinates. Periodic motion: small oscillations, normal modes. Special theory of relativity- Lorentz transformations, relativistic kinematics and mass—energy equivalence.

Electromagnetic Theory

Electrostatics: Gauss's law and its applications, Laplace and Poisson equations,

boundary value problems. Magnetostatics: Biot-Savart law, Ampere's theorem. Electromagnetic induction. Maxwell's equations in free space and linear isotropic media; boundary conditions on the fields at interfaces. Scalar and vector potentials, gauge invariance. Electromagnetic waves in free space. Dielectrics and conductors. Reflection and refraction, polarization, Fresnel's law, interference, coherence, and diffraction. Dynamics of charged particles in static and uniform electromagnetic fields.

Quantum Mechanics

Wave-particle duality. Schrödinger equation (time-dependent and time-independent). Eigenvalue problems (particle in a box, harmonic oscillator, etc.). Tunneling through a barrier. Wave-function in coordinate and momentum representations. Commutators and Heisenberg uncertainty principle. Dirac notation for state vectors. Motion in a central potential: orbital angular momentum, angular momentum algebra, spin, addition of angular momenta; Hydrogen atom. Stern-Gerlach experiment. Time-independent perturbation theory and applications. Variational method. Time dependent perturbation theory and Fermi's golden rule, selection rules. Identical particles, Pauli exclusion principle, spin-statistics connection.

Thermodynamic and Statistical Physics

Laws of thermodynamics and their consequences. Thermodynamic potentials, Maxwell relations, chemical potential, phase equilibria. Phase space, micro- and macro-states. Micro- canonical, canonical and grand-canonical ensembles and partition functions. Free energy and its connection with thermodynamic quantities. Classical and quantum statistics. Ideal Bose and Fermi gases. Principle of detailed balance. Blackbody radiation and Planck's distribution law.

Electronics and Experimental Methods

Semiconductor devices (diodes, junctions, transistors, field effect devices, homo-

and hetero-junction devices), device structure, device characteristics, frequency dependence and applications. Opto-electronic devices (solar cells, photo-detectors, LEDs). Operational amplifiers and their applications. Digital techniques and applications (registers, counters, comparators and similar circuits). A/D and D/A converters. Microprocessor and microcontroller basics.

Data interpretation and analysis. Precision and accuracy. Error analysis, propagation of errors. Least squares fitting,

Mathematical Methods of Physics

Green's function. Partial differential equations (Laplace, wave and heat equations in two and three dimensions). Elements of computational techniques: root of functions, interpolation, extrapolation, integration by trapezoid and Simpson's rule, Solution of first order differential equation using Runge-Kutta method. Finite difference methods. Tensors. Introductory group theory: SU(2), O(3).

Classical Mechanics

Dynamical systems, Phase space dynamics, stability analysis. Poisson brackets and canonical transformations. Symmetry, invariance and Noether's theorem. Hamilton-Jacobi theory.

Electromagnetic Theory

Dispersion relations in plasma. Lorentz invariance of Maxwell's equation. Transmission lines and wave guides. Radiation- from moving charges and dipoles and retarded potentials.

Quantum Mechanics

Spin-orbit coupling, fine structure. WKB approximation. Elementary theory of scattering: phase shifts, partial waves, Born approximation. Relativistic quantum mechanics: Klein- Gordon and Dirac equations. Semi-classical theory of radiation.

Thermodynamic and Statistical Physics

First- and second-order phase transitions. Diamagnetism, paramagnetism, and ferromagnetism. Ising model. Bose-Einstein condensation. Diffusion equation. Random walk and Brownian motion. Introduction to nonequilibrium processes.

Electronics and Experimental Methods

Linear and nonlinear curve fitting, chi-square test. Transducers (temperature, pressure/vacuum, magnetic fields, vibration, optical, and particle detectors). Measurement and control. Signal conditioning and recovery. Impedance matching, amplification (Op-amp based, instrumentation amp, feedback), filtering and noise reduction, shielding and grounding. Fourier transforms, lock-in detector, box-car integrator, modulation techniques.

High frequency devices (including generators and detectors).

Atomic & Molecular Physics

Quantum states of an electron in an atom. Electron spin. Spectrum of helium and alkali atom. Relativistic corrections for energy levels of hydrogen atom, hyperfine structure and isotopic shift, width of spectrum lines, LS & JJ couplings. Zeeman, Paschen-Bach & Stark effects. Electron spin resonance. Nuclear magnetic resonance, chemical shift. Frank-Condon principle. Born-Oppenheimer approximation. Electronic, rotational, vibrational and Raman spectra of diatomic molecules, selection rules. Lasers: spontaneous and stimulated emission, Einstein A & B coefficients. Optical pumping, population inversion, rate equation. Modes of resonators and coherence length.

Condensed Matter Physics

Bravais lattices. Reciprocal lattice. Diffraction and the structure factor. Bonding of solids. Elastic properties, phonons, lattice specific heat. Free electron theory and electronic specific heat. Response and relaxation phenomena. Drude model of electrical and thermal conductivity. Hall effect and thermoelectric power. Electron motion in a periodic potential, band theory of solids: metals, insulators and

semiconductors. Superconductivity: type-I and type-II superconductors. Josephson junctions. Superfluidity. Defects and dislocations. Ordered phases of matter: translational and orientational order, kinds of liquid crystalline order. Quasi crystals.

Nuclear and Particle Physics

Basic nuclear properties: size, shape and charge distribution, spin and parity. Binding energy, semi-empirical mass formula, liquid drop model. Nature of the nuclear force, form of nucleon-nucleon potential, charge-independence and charge-symmetry of nuclear forces. Deuteron problem. Evidence of shell structure, single-particle shell model, its validity and limitations. Rotational spectra. Elementary ideas of alpha, beta and gamma decays and their selection rules. Fission and fusion. Nuclear reactions, reaction mechanism, compound nuclei and direct reactions.

Classification of fundamental forces. Elementary particles and their quantum numbers (charge, spin, parity, isospin, strangeness, etc.). Gellmann-Nishijima formula. Quark model, baryons and mesons. C, P, and T invariance. Application of symmetry arguments to particle reactions. Parity non-conservation in weak interaction. Relativistic kinematics.

11.CE	\ <u></u>	Civil Engineering

Engineering Mechanics:

Units and Dimensions, SI Units, Vectors, Concept of Force, Concept of particle and rigid body. Concurrent, Non Concurrent and parallel forces in a plane, moment of force, free body diagram, conditions of equilibrium, Principle of virtual work, equivalent force system.

First and Second Moment of area, Mass moment of Inertia.

Static Friction. Kinematics and Kinetics:

Kinematics in Cartesian Co-ordinates, motion under uniform and nonuniform acceleration, motion under gravity. Kinetics of particle: Momentum and Energy principles, collision of elastic bodies, rotation of rigid bodies.

Strength of Materials:

Simple Stress and Strain, Elastic constants, axially loaded compression members, Shear force and bending moment, theory of simple bending, Shear Stress distribution across cross sections, Beams of uniform strength.

Deflection of beams: Macaulay's method, Mohr's Moment area method, Conjugate beam method, unit load method. Torsion of Shafts, Elastic stability of columns, Euler's Rankine's and Secant formulae.

Structural Analysis:

Castiglianio's theorems I and II, unit load method of consistent deformation applied to beams and pin jointed trusses. Slope-deflection, moment distribution, Rolling loads and Influences lines: Influences lines for Shear Force and Bending moment at a section of beam. Criteria for maximum shear force and bending Moment in beams traversed by a system of moving loads. Influences lines for simply supported plane pin jointed trusses.

Arches: Three hinged, two hinged and fixed arches, rib shortening and temperature effects.

Matrix methods of analysis: Force method and displacement method of analysis of indeterminate beams and rigid frames.

Plastic Analysis of beams and frames: Theory of plastic bending, plastic analysis, statical method, Mechanism method.

Unsymmetrical bending: Moment of inertia, product of inertia, position of Neutral Axis and Principle axes, calculation of bending stresses.

Design of Structures: Steel, Concrete and Masonry Structures:

Structural Steel Design:

Design of Concrete and Masonry Structures:

Concept of mix design. Reinforced Concrete: Working Stress and Limit State method of design—Recommendations of I.S. codes Design of one way and two way slabs, stair-case slabs, simple and continuous beams of rectangular, T and L sections. Compression members under direct load with or without eccentricity, Cantilever and Counter fort type retaining walls.

Water tanks: Design requirements for Rectangular and circular tanks resting on ground.

Prestressed concrete: Methods and systems of prestressing, anchorages, Analysis and design of sections for flexure based on working stress, loss of prestress.

Design of brick masonry as per I.S. Codes

Fluid Mechanics, Open Channel Flow and Hydraulic Machines: Fluid Mechanics:

Fluid properties and their role in fluid motion, fluid statics including forces acting on plane and curved surfaces.

Kinematics and Dynamics of Fluid flow: Velocity and accelerations, stream lines, equation of continuity, irrotational and rotational flow, velocity potential and stream functions.

Continuity, momentum and energy equation, Navier-Stokes equation, Euler's equation of motion, application to fluid flow problems, pipe flow, sluice gates, weirs.

Dimensional Analysis and Similitude:

Buckingham's Pi-theorem, dimensionless parameters.

Laminar Flow:

Laminar flow between parallel, stationary and moving plates, flow through tube.

Boundary layer: Laminar and turbulent boundary layer on a flat plate, laminar sub layer, smooth and rough boundaries, drag and lift. Turbulent flow through pipes: Characteristics of turbulent flow, velocity distribution and variation of pipe friction factor, hydraulic grade line and total energy line.

Open channel flow:

Uniform and non-uniform flows, momentum and energy correction factors, specific energy and specific force, critical depth, rapidly varied flow, hydraulic jump, gradually varied flow, classification of surface profiles, control section, step method of integration of varied flow equation.

Hydraulic Machines and Hydropower:

Hydraulic turbines, types classification, Choice of turbines, performance parameters, controls, characteristics, specific speed. Principles of hydropower development.

Geotechnical Engineering:

Soil Type and structure – gradation and particle size distribution – consistency limits.

Water in soil – capillary and structural – effective stress and pore water pressure – permeability concept – field and laboratory determination of permeability – Seepage pressure – quick sand conditions – Shear strength determination – Mohr Coulomb concept.

Compaction of soil – Laboratory and field tests.

Compressibility and consolidation concept – consolidation theory – consolidation settlement analysis.

Earth pressure theory and analysis for retaining walls, Application for sheet piles and Braced excavation.

Bearing capacity of soil – approaches for analysis – Field tests – settlement analysis – stability of slope of earth walk.

Subsurface exploration of soils – methods

Foundation – Type and selection criteria for foundation of structures – Design criteria for foundation – Analysis of distribution of stress for footings and pile – pile group action-pile load test. Ground improvement techniques.

Construction Technology, Equipment, Planning and Management: Construction Technology:

Engineering Materials:

Physical properties of construction materials with respect to their use in construction - Stones, Bricks and Tiles; Lime, Cement, different types of Mortars and Concrete.

Specific use of ferro cement, fibre reinforced C.C, High strength concrete. Timber, properties and defects - common preservation treatments.

Use and selection of materials for specific use like Low Cost Housing, Mass Housing, High Rise Buildings.

Construction:

Masonry principles using Brick, stone, Blocks – construction detailing and strength characteristics.

Types of plastering, pointing, flooring, roofing and construction features. Common repairs in buildings.

Principles of functional planning of building for residents and specific use - Building code provisions.

Basic principles of detailed and approximate estimating - specification writing and rate analysis – principles of valuation of real property.

12.ME	Mechanical Engineering
-------	------------------------

Mechanics:

Mechanics of rigid bodies: Equations of equilibrium in space and its application; first and second moments of area; simple problems on friction; kinematics of particles for plane motion; elementary particle dynamics.

Mechanics of deformable bodies: Generalized Hooke's law and its application; design problems on axial stress, shear stress and bearing stress; material properties for dynamic loading; bending shear and stresses in beams; determination of principle stresses and strains

- analytical and graphical; compound and combined stresses; bi-axial stresses - thin walled pressure vessel; material behaviour and design factors for dynamic load; design of circular shafts for bending and torsional load only; deflection of beam for statically determinate problems; theories of failure.

Engineering Materials: Basic concepts on structure of solids; common ferrous and non- ferrous materials and their applications; heat-treatment of steels; non-metals- plastics, ceramics, composite materials and nano-materials.

Theory of Machines: Kinematic and dynamic analysis of plane mechanisms. Cams, Gears and epicyclic gear trains, flywheels, governors, balancing of rigid rotors, balancing of single and multicylinder engines, linear vibration analysis of mechanical systems (single degree of freedom), Critical speeds and whirling of shafts.

Manufacturing Science:

Manufacturing Process: Machine tool engineering – Merchant's force analysis; Taylor's tool life equation; conventional machining; NC and CNC machining process; jigs and fixtures. Non-conventional machining – EDM, ECM, ultrasonic, water jet machining etc; application of lasers and plasmas; energy rate calculations. Forming and welding processes- standard processes. Metrology - concept of fits and tolerances; tools and gauges; comparators; inspection of length; position; profile and surface finish.

Manufacturing Management: System design: factory location- simple OR models; plant layout - methods based; applications of engineering economic analysis and break- even analysis for product selection, process selection and capacity planning; predetermined time standards. System planning; forecasting methods based on regression and decomposition, design and balancing of multi model and stochastic assembly lines; inventory management – probabilistic inventory models for order time and order quantity determination; JIT systems; strategic sourcing; managing inter plant logistics. System operations and control: Scheduling algorithms for job

shops; applications of statistical methods for product and process quality control - applications of control charts for mean, range, percent defective, number of defectives and defects per unit; quality cost systems; management of resources, organizations and risks in projects. System improvement: Implementation of systems, such as total quality management, developing and managing flexible, lean and agile organizations.

Thermodynamics, Gas Dynamics and Turbine:

Basic concept of First –law and second law of Thermodynamics; concept of entropy and reversibility; availability and unavailability and irreversibility.

Classification and properties of fluids; incompressible and compressible fluids flows; effect of Mach number and compressibility; continuity momentum and energy equations; normal and oblique shocks; one dimensional isentropic flow; flow or fluids in duct with frictions that transfer.

Flow through fans, blowers and compressors; axial and centrifugal flow configuration; design of fans and compressors; single problems compresses and turbine cascade; open and closed cycle gas turbines; work done in the gas turbine; reheat and regenerators.

Heat Transfer:

Conduction heat transfer- general conduction equation - Laplace, Poisson and Fourier equations; Fourier law of conduction; one dimensional steady state heat conduction applied to simple wall, solid and hollow cylinder & spheres.

Convection heat transfer- Newton's law of convection; free and forces convection; heat transfer during laminar and turbulent flow of an incompressible fluid over a flat plate; concepts of Nusselt number, hydrodynamic and thermal boundary layer their thickness; Prandtl number; analogy between heat and momentum transfer-Reynolds, Colbum, Prandtlanalogies; heat transfer during laminar and turbulent flow through horizontal tubes; free convection from horizontal and vertical plates. Black body radiation - basic radiation laws such as Stefan-Boltzman, Planck

distribution, Wein's displacement etc.

Basic heat exchanger analysis; classification of heat exchangers.

I.C. Engines:

Classification, thermodynamic cycles of operation; determination of break power, indicated power, mechanical efficiency, heat balance sheet, interpretation of performance characteristics, petrol, gas and diesel engines.

Combustion in SI and CI engines, normal and abnormal combustion; effect of working parameters on knocking, reduction of knocking; Forms of combustion chamber for SI and CI engines; rating of fuels; additives; emission.

Different systems of IC engines- fuels; lubricating; cooling and transmission systems. Alternate fuels in IC engines.

Steam Engineering:

Steam generation- modified Rankine cycle analysis; Modern steam boilers; steam at critical and supercritical pressures; draught equipment; natural and artificial draught; boiler fuels solid, liquid and gaseous fuels. Steam turbines - principle; types; compounding; impulse and reaction turbines; axial thrust.

Steam nozzles- flow of steam in convergent and divergent nozzle; pressure at throat for maximum discharge with different initial steam conditions such as wet, saturated and superheated, effect of variation of back pressure; supersaturated flow of steam in nozzles, Wilson line.

Rankine cycle with internal and external irreversibility; reheat factor; reheating and regeneration, methods of governing; back pressure and pass out turbines.

Steam power plants - combined cycle power generation; heat recovery steam generators (HRSG) fired and unfired, cogeneration plants.

Refrigeration and air-conditioning:

Vapour compression refrigeration cycle - cycle on p-H & T-s diagrams; ecofriendly refrigerants - R134a,123; Systems like evaporators, condensers, compressor, expansion devices. Simple vapour absorption systems. Psychrometry - properties; processes; charts; sensible heating and cooling; humidification and dehumidification effective temperature; air-conditioning load calculation; simple duct design.

13.MT Metallurgical Engineering

Thermodynamics and Rate Processes: Laws of thermodynamics, activity, equilibrium constant, applications to metallurgical systems, solutions, phase equilibria, Ellingham and phase stability diagrams, thermodynamics of surfaces, interfaces and defects, adsorption and segregation; basic kinetic laws, order of reactions, rate constants and rate limiting steps; principles of electro chemistry-single electrode potential, electro-chemical cells and polarizations, aqueous corrosion and protection of metals, oxidation and high temperature corrosion – characterization and control; heat transfer – conduction, convection and heat transfer coefficient relations, radiation, mass transfer – diffusion and Fick's laws, mass transfer coefficients; momentum transfer – concepts of viscosity, shell balances, Bernoulli's equation, friction factors.

Extractive Metallurgy: Minerals of economic importance, comminution techniques, size classification, Flotation, gravity and other methods of mineral processing; agglomeration, pyrohydro- and electro-metallurgical processes; material and energy balances; principles and processes for the extraction of nonferrous metals – aluminium, copper, zinc, lead, magnesium, nickel, titanium and other rare metals; iron and steel making – principles, role structure and properties of slags, metallurgical coke, blast furnace, direct reduction processes, primary and secondary steel making, ladle metallurgy operations including deoxidation, desulphurization, sulphide shape control, inert gas rinsing and vacuum reactors; secondary refining processes including AOD, VAD, VOD, VAR and ESR; ingot and continuous casting; stainless steel making, furnaces and refractories.

Physical Metallurgy: Crystal structure and bonding characteristics of metals,

alloys, ceramics and polymers, structure of surfaces and interfaces, nanocrystalline and amorphous structures; solid solutions; solidification; phase transformation and binary phase diagrams; principles of heat treatment of steels, cast iron and aluminum alloys; surface treatments; recovery, recrystallization and grain growth; industrially important ferrous and non-ferrous alloys; elements of X-ray and electron diffraction; principles of scanning and transmission electron microscopy; industrial ceramics, polymers and composites; electronic basis of thermal, optical, electrical and magnetic properties of materials; electronic and opto- electronic materials.

Mechanical Metallurgy: Elasticity, yield criteria and plasticity; defects in crystals; elements of dislocation theory – types of dislocations, slip and twinning, source and multiplication of dislocations, stress fields around dislocations, partial dislocations, dislocation interactions and reactions; strengthening mechanisms; tensile, fatigue and creep behaviour; super-plasticity; fracture – Griffith theory, basic concepts of linear elastic and elasto-plastic fracture mechanics, ductile to brittle transition, fracture toughness; failure analysis; mechanical testing – tension, compression, torsion, hardness, impact, creep, fatigue, fracture toughness and formability.

Manufacturing Processes: Metal casting – patterns and moulds including mould design involving feeding, gating and risering, melting, casting practices in sand casting, permanent mould casting, investment casting and shell moulding, casting defects and repair; hot, warm and cold working of metals, Metal forming – fundamentals of metal forming processes of rolling, forging, extrusion, wire drawing and sheet metal forming, defects in forming; Metal joining – soldering, brazing and welding, common welding processes of shielded metal arc welding, gas metal arc welding, gas tungsten arc welding and submerged arc welding; welding metallurgy, problems associated with welding of steels and aluminium

alloys, defects in welded joints; powder metallurgy; NDT using dye-penetrant, ultrasonic, radiography, eddy current, acoustic emission and magnetic particle methods.

14.TF

Textile Engineering

Textile Fibres: Classification of textile fibres; Essential requirements of fibre forming polymers; Gross and fine structure of natural fibres like cotton, wool and silk. Introduction to important bastfibres; properties and uses of natural and manmade fibres; physical and chemical methods of fibre and blend identification and blend analysis.

Molecular architecture, amorphous and crystalline phases, glass transition, plasticization, crystallization, melting, factors affecting Tg and Tm; Process of viscose and acetate preparation. Polymerization of nylon-6, nylon-66, poly (ethylene terephthalate), polyacrylonitrile and polypropylene; Melt Spinning processes, characteristic features of PET, polyamide and polypropylene spinning; wet and dry spinning of viscose and acrylic fibres; post spinning operations such as drawing, heat setting, tow-to-top conversion and different texturing methods.

Methods of investigating fibre structure e.g., Density, X-ray diffraction, birefringence, optical and electron microscopy, I.R. absorption, thermal methods (DSC, DMA/TMA, TGA); structure and morphology ofman-made fibres, mechanical properties of fibres, moisture sorption in fibres; fibre structure and property correlation.

Yarn manufacture and yarn structure & properties: Principles of opening, cleaning and mixing/blending of fibrous materials, working principle of modern opening and cleaning equipments; the technology of carding, carding of cotton and synthetic fibres; Drafting operation, roller and apron drafting principle, causes of mass irregularity introduced by drafting; roller arrangements in drafting systems;

principles of cotton combing, combing cycle, mechanism and function, combing efficiency, lap preparation; recent developments in comber; Roving production, mechanism of bobbin building, roving twist; Principle of ring spinning, forces acting on yarn and traveler; ring & traveler designs; mechanism of cop formation, causes of end breakages; working principle of ring doubler and two for one twister, single and folded yarn twist, properties of double yarns, production of core spun yarn, compact spinning, principle of non conventional methods of yarn production such as rotor spinning, air jet spinning, wrap spinning, twist less spinning and friction spinning.

Yarn contraction, yarn diameter, specific volume & packing coefficient; twist strength relationship in spun yarns; fibre configuration and orientation in yarn; cause of fibre migration and its estimation, irregularity index, properties of ring, rotor and air-jet yarns.

Fabric manufacture and Fabric Structure: Principles of cheese and cone winding processes and machines; random and precision winding; package faults and their remedies; yarn clearers and tensioners; different systems of yarn splicing; features of modern cone winding machines; different types of warping creels; features of modern beam and sectional warping machines; different sizing systems, sizing of spun and filament yarns, modern sizing machines; principles of pirn winding processes and machines; primary and secondary motions of loom, effect of their settings and timings on fabric formation, fabric appearance and weaving performance; dobby and jacquard shedding; mechanics of weft insertion with

shuttle; warp and weft stop motions, warp protection, weft replenishment; functional principles of weft insertion systems of shuttle-less weaving machines, principles of multiphase and circular looms.

Principles of weft and warp knitting; basic weft and warp knitted structures.

Classification, production and areas of application of nonwoven fabrics. Basic woven fabric constructions and their derivatives; crepe, cord, terry, gauze, leno and double cloth constructions. Peirce's equations for fabric geometry; elastica model of plain woven fabrics; thickness, cover and maximum sett of woven fabrics.

Textile Testing: Sampling techniques, sample size and sampling errors. Measurement of fibre length, fineness, crimp, strength and reflectance; measurement of cotton fibre maturity and trash content; HVI and AFIS for fibre testing. Measurement of yarn count, twist and hairiness; tensile testing of fibres, yarns and fabrics; evenness testing of slivers, rovings and yarns; testing equipment for measurement test methods of fabric properties like thickness, compressibility, air permeability, drape, crease recovery, tear strength, bursting strength and abrasion resistance. FAST and Kawabata instruments and systems for objective fabric evaluation. Statistical data analysis of experimental results. Correlation analysis, significance tests and analysis of variance; frequency distributions and control charts.

Preparatory Processes: Chemistry and practice of preparatory processes for cotton, wool and silk. Mercerization of cotton. Preparatory processes for nylon, polyester and acrylic and polyester/cotton blends.

Dyeing: Classification of dyes. Dyeing of cotton, wool, silk, polyester, nylon and acrylic with appropriate dye classes. Dyeing polyester/cotton and polyester/wool blends. Batchwise and continuous dyeing machines. Dyeing of cotton knitted fabrics and machines used. Dye fibre interaction. Introduction to thermodynamics and kinetics of dyeing. Methods for determination of wash, light and rubbing fastness. Evaluation of fastness properties with the help of grey scale.

Printing: Styles of printing. Printing thickeners including synthetic thickeners. Printing auxiliaries. Printing of cotton with reactive dyes. Printing of wool, silk,

nylon with acid and metal complex dyes. Printing of polyester with disperse dyes. Methods of dye fixation after printing. Resist and discharge printing of cotton, silk and polyester. Printing of polyester/cotton blends with disperse/reactive combination. Transfer printing of polyester. Developments in inkjet printing.